- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Gabritchidze, Bekari (3)
-
Kooi, Jacob (3)
-
Minnich, Austin J. (3)
-
Choi, Alexander Y. (2)
-
Esho, Iretomiwa (2)
-
Readhead, Anthony C. (2)
-
Ardizzi, Anthony J. (1)
-
Cleary, Kieran (1)
-
Cleary, Kieran A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report wafer characterization of the S-parameters and microwave noise temperature of discrete GaAs and GaN HEMTs over a temperature range of 20 - 300 K. The measured noise temperature (T50) exhibits a dependence on physical temperature that is inconsistent with a constant drain temperature, with Td for the GaAs and GaN devices changing from ~ 2000 K and ~2800 K at room temperature to ~ 700 K and ~ 1800 K at cryogenic temperatures, respectively. The observed temperature dependence is qualitatively consistent with that predicted from a theory of drain noise based on real-space transfer of electrons from the channel to the barrier.more » « less
-
Ardizzi, Anthony J.; Choi, Alexander Y.; Gabritchidze, Bekari; Kooi, Jacob; Cleary, Kieran A.; Readhead, Anthony C.; Minnich, Austin J. (, Journal of Applied Physics)The fundamental limits of the microwave noise performance of high electron-mobility transistors (HEMTs) are of scientific and practical interest for applications in radio astronomy and quantum computing. Self-heating at cryogenic temperatures has been reported to be a limiting mechanism for the noise, but cryogenic cooling strategies to mitigate it, for instance, using liquid cryogens, have not been evaluated. Here, we report microwave noise measurements of a packaged two-stage amplifier with GaAs metamorphic HEMTs immersed in normal and superfluid [Formula: see text]He baths and in vacuum from 1.6 to 80 K. We find that these liquid cryogens are unable to mitigate the thermal noise associated with self-heating. Considering this finding, we examine the implications for the lower bounds of cryogenic noise performance in HEMTs. Our analysis supports the general design principle for cryogenic HEMTs of maximizing gain at the lowest possible power.more » « less
-
Choi, Alexander Y.; Esho, Iretomiwa; Gabritchidze, Bekari; Kooi, Jacob; Minnich, Austin J. (, Journal of Applied Physics)
An official website of the United States government
